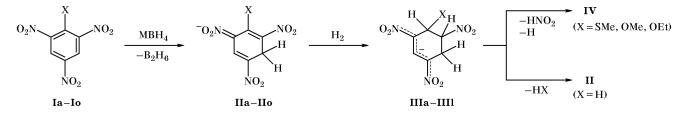
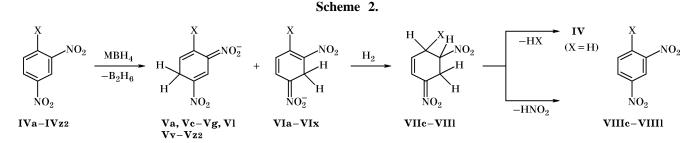
Russian Journal of Organic Chemistry, Vol. 37, No. 5, 2001, pp. 750–751. Translated from Zhurnal Organicheskoi Khimii, Vol. 37, No. 5, 2001, pp. 785–786. Original Russian Text Copyright © 2001 by Grudtsyn, Gitis.

> SHORT COMMUNICATIONS

Mechanism of Hydrogenation of 1,3,5-Trinitrobenzene and 1,3-Dinitrobenzene Derivatives in Reactions with Alkali Metal Tetrahydridoborates


Yu. D. Grudtsyn and S. S. Gitis

Tolstoy Tula State Pedagogical University, pr. Lenina 125, Tula, 300026 Russia


Received July 4, 2000

Reactions of 1-substituted 2,4,6-trinitrobenzenes with hydridoborate complexes characteristically result in replacement of the 1-substituent by hydrogen [1, 2], whereas 1-X-2,4-dinitrobenzenes react with NaBH₄ to give products of hydrogenolysis of the 2-nitro group [3]. By studying the reactions of potassium (sodium) tetrahydridoborate with a series of 1-X-2,4,6-trinitrobenzenes and 1-X-2,4-dinitrobenzenes in DMSO- d_6 by ¹H NMR spectroscopy (in some cases, by ¹³C NMR) we revealed a general mechanism of the process which was different from the direct [1] or vicinal [3] attack by hydride ion on the leaving group. In both series, the initial stage was addition of hydride ion at unsubstituted carbon atom of the aromatic ring to give H- σ_3 -complexes of trinitro compounds (Scheme 1) or isomeric H- σ_3 /H- σ_5 -adducts with *m*-dinitrobenzene derivatives (Scheme 2); here, the subscript at σ denotes the site of nucleophile addition to the substrate. In DMSO- d_6 containing traces of moisture and absorbed oxygen, the next stage is formation of molecular hydrogen according to Scheme 3. The signal at δ 4.615 ppm in the ¹H NMR spectrum belongs to

Scheme 1.

X = H (a), OH (b), OMe (c), OEt (d), NHMe (e), NMe₂ (f), CO₂H (g), CO₂Me (h), Cl (i), SMe (j), SC₆H₂(NO₂)₃-2,4,6 (k), SC₆H₃(NO₂)₂-2,4 (l), NH₂ (m), CH₃ (n), CH₂COCH₃ (o).

$$\begin{split} M &= K, Na; X = H (a), OK (b), OMe (c), OEt (d), OCH_2CH_2Cl (e), Cl (f), Br (g), NMe_2 (h), SMe (i), SPh (j), SC_6H_4NO_2-4 (k), \\ SOMe (l), Me (m), CH_2COMe (n), NH_2 (o), NHMe (p), NHPh (q), NHCOMe (r), NHNH_2 (s), NHCOPh (t), \\ NHCOC_6H_4NO_2-4 (u), SC_6H_3(NO_2)_2-2,4 (v), SOPh (w), SOC_6H_4NO_2-4 (x), SO_2Me (y), SO_2Ph (z), SO_2C_6H_4NO_2-4 (z1), \\ SO_2C_6H_3(NO_2)_2-2,4 (z2). \end{split}$$

1070-4280/01/3705-0750 \$25.00 © 2001 MAIK "Nauka/Interperiodica"

Scheme 3.

$$B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2$$

 $2H_2 + O_2 \longrightarrow 2H_2O$

molecular hydrogen absorbed by the solvent. The energy released in reactions outlined in Scheme 3 promotes hydrogen addition at the most activated double bond in the ring of H- σ_3 -complexes, which involves the substituent X and nitro group (Schemes 1 and 2). The double bond at C^1 in σ -adduct II $(X = NH_2)$ is deactivated due to donor effect of the amino group; therefore, molecular hydrogen adds at the double bond at C^4 to form 1-amino-2-aci-nitro-4,6-dinitro-5-cyclohexene potassium (or sodium) salt **IX**. In the ¹H NMR spectra of compounds **III** (X = H) and IX the signal of the proton neighboring to the nitro group appears as a quintet $(J \approx 5.5 \text{ Hz})$ in the region δ 5.2–5.0 ppm, and signals from nonequivalent axial and equatorial protons in positions 3 and 5 are doublets of doublets ($J_{ax-eq} \approx 16$ Hz) in the region δ 3.7–2.7 ppm. In the ¹³C NMR spectra of the same adducts, the signal from the sp^3 -carbon atom attached to the nitro group (C² and C⁴, respectively) is observed at $\delta_{\rm C}$ ~78 ppm; in the off-resonance spectrum it is split into a doublet, indicating that there is a proton attached thereto.

Adducts **IIIb**–**IIII** undergo decomposition by the action of unreacted trinitro compound, resulting in 1,2-elimination of HX molecule provided that X is a readily leaving group. Elimination of HNO₂ was observed for X = SMe, OMe, and OEt; in the ¹H NMR spectra we observed *ABM* patterns from the corresponding dinitro compounds **IV** (X = SMe, OMe, OEt). Their precursors are σ -complexes **V**

(X = SMe, OMe, OEt); in the presence of the corresponding trinitro compounds adducts **V** act as donors of hydride ion. This scheme is supported by hydride ion transfer from σ -adducts **VI** ($X = NH_2$) [4] and **V** (X = H) to 1,3,5-trinitrobenzene.

Adducts **VIIc–VIII** derived from dinitrobenzenes undergo aromatization to mononitro compounds **VIIIc–VIIII** through elimination of HNO₂ molecule and hydride ion. The products are identified via *AA'BB'* patterns in the ¹H NMR spectra. In the series of 1-X-2,4-dinitrobenzenes, hydrogenolysis of the 1-substituent was observed for X = SO₂Me, SOMe, SOC₆H₄NO₂-4, and NHCOC₆H₄NO₂-4; the reaction gave initial *m*-dinitrobenzene and products of its further transformations.

The proposed mechanism of hydrogenolysis of 1,3,5-trinitrobenzene and 1,3-dinitrobenzene derivatives can be denoted as $S_NAr(AA_2E)$, i.e., nucleophilic aromatic substitution via addition–addition–elimination. We believe that this mechanism deserves specific attention, for it also applies to hydrolysis reactions: for example, it explains formation of 3,5-dinitrophenol in the initial stage of the reaction of 2,4,6-trinitrobenzoic acid with NaBH₄.

REFERENCES

- 1. Kaplan, L.A. and Siedle, A.R., J. Chem. Soc., 1971, vol. 36, no. 7, pp. 937–939.
- Machaček, V., Lyčka, V., and Nadvornik, M., Collect. Czech. Chem. Commun., 1985, vol. 50, no. 11, pp. 2598–2606.
- 3. Gold, V., Miri, A.Y., and Robinson, S.R., *J. Chem. Soc., Perkin Trans.* 2, 1980, no. 2, pp. 243–249.
- 4. Atkins, P.J., Gold, V., and Wassef, W.N., J. Chem. Soc., Perkin Trans. 2, 1983, no. 8, pp. 1197–1198.